Specification of MAKryept

Alaa Kryeem (mzcdzdamri_f_)

June 03, 2020

1. Cipher:

The block cipher MAKryept has a 64-bit blocksize and a 64-bit key. MAKryept is based on a feistel network with 4-bit sboxes and a bit permutation as the linear layer, combined with Shift rows (SR) and Mix columns (MC) operation for stronger diffusion, see Cipher diagram section (1.6) below for a visual representation.

MAKryept cipher consists of 12 rounds.

1.1. Round function:

Given a word $\mathrm{x}=\mathfrak{l} \mid r$ where \mathscr{l} consists of the 32 most significant bits and r consists of the 32 least significant bits, we can define the round function F as follows:
As first and last steps we apply key whitening:
$X=X \oplus W K L \oplus W K R$
As a second step we apply the following:
We divide \mathcal{I} into two parts: $I I$ and $\mathcal{I r}^{(}$. (each is 16 bits)

We define:

$$
\begin{aligned}
& \operatorname{MAK}\left(\mathcal{I}_{=32 \mathrm{bits}}\right)=\left(\sigma\left(\mathscr{I} \oplus \mathscr{I}_{r}\right) \ll 16\right) \mid \sigma\left(\sigma\left(\mathscr{I L} \oplus \mathcal{I}_{r}\right) \oplus \mathcal{I}_{r}\right) \\
& \operatorname{Semi}-\mathrm{F}\left(\mathcal{l}, r, \mathrm{~K}_{\mathrm{i}}\right)=\mathrm{S}(\operatorname{MAK}(\mathrm{~S}(\mathcal{l}))) \oplus r \oplus \mathrm{~K}_{\mathrm{i}} \\
& F\left(\mathcal{L}, r, K_{i}\right)=\operatorname{MC}\left(\operatorname{SR}\left(\left(\operatorname{Semi}-F\left(\mathcal{L}, r, K_{i}\right) \ll 32\right) \mid r i g h t\right)\right)
\end{aligned}
$$

Where S is the parallel application of the 4-bit sbox S to the state and σ is a bit permutation. The sbox S is defined as follows:

$$
S=[0 x 3,0 x e, 0 x 5,0 x d, 0 \times 9,0 \times a, 0 \times 1,0 x f, 0 x 7,0 x c, 0 \times 0,0 \times 8,0 \times 6,0 \times 2,0 \times b, 0 \times 4]
$$

We create a 8bit Sbox based on S, for better performance. (Hardcoded in the code) and the bit permutation σ is defined as follows (Taken from TC05):

$$
\sigma=\left(\begin{array}{llll|llll|llll|llll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F \\
6 & 0 & 1 & 7 & E & 8 & 9 & F & 2 & 4 & 5 & 3 & A & C & D & B
\end{array}\right)
$$

MC is mix columns, SR is shift rows, defined as follows:

1.2. Shift rows:

In the shift rows layer (SR) we rotate the nibbles in the rows by $0,1,2$ and 3 places to the left.

1.3. Mix Columns

In the Mix Columns (MC) layer we mix the nibbles in every column according to a matrix. The matrix is given by:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

1.4. Key schedule:

Given master key $K=k_{0} \mid k_{1}$ the round key k is defined as follows:

$$
k_{i}=k_{i-1} \oplus \sigma\left(k_{i-2}\right) \oplus\left(\sigma\left(k_{i-2} \gg 16\right) \ll 16\right) \oplus 0 x C 5 A 1 B 9 D 2
$$

1.5. Test vectors:

Plain-text	Cipher-text	Key
0x00000000000000000	0x5db04e75e8355076	0x0000000000000000
0x123456789ABCDEF	0xab09ddda9ca20444	0x0000000000000000
0x123456789ABCDEF	0x182373787299b587	0x00000000000000001
0x123456789ABCDEF	0x1f7bf9657ca87d1d	$0 x 00000000000000002$

1.6. Cipher diagram:

