
Final project
Ranin Nassra

1 Cipher
The block cipher has a 64-bit block size and a 64-bit key,
computes the cipher in 12 rounds. Based on a feistel network.

1.1 Round Function
The round function is defined as:

F(l , r , k i)=(σ(L(S(l)))⊗r⊗k i , l)
Where l is the 16 most significant bits and r is the least 16 least
significant bits of the plain text (x=l|r). k i is the round key.
S is the parallel application of the 4-bit sbox:

sbox = (1, 0, 5, 3, e, 2, f, 7, d, a, 9, b, c, 8, 4, 6)
The diffusion layer consist of L:

L(x)=(x≪7)⊗(x≪16)⊗x
and σ is the following bit permutation:

0 1 2 3 4 5 6 7 8 9 A B C D E F

C A D 3 E B F 9 7 1 8 5 0 2 4 6

1.2 Key schedule
Given master key K=k1∣k2 where k1 is the 16 most significant bits
and k2 is the least 16 least significant bits, the key for the i-th
round is given by:

ki = ∂(k i)⊗0 x7 if i=0,1
∂(k0⊗k1⊗...⊗k(i−1))⊗0 x 7 else

1.3 Test vectors

Plain text Cipher text Key

1234567890ABCDEF BC62E3DCFF7AA374 0000000000000000

9D56F59C6E35487F 5C3933ECB664AF04 25A8B5EE0241D63E

1.4 Explanation
For the sbox I used the midori cipher s-box, checked the DDT of the
sbox and found out that it has low enteries, so I decided to use it.
The pbox is also one of midoris sboxes, slightly changed for more
diffusion.
Each round key dependes on all the previous round keys, that is in
case of when the attacker tries to guess the master key she would
have to guess all the round keys.
The block cipher computes the cipher in 12 rounds, for a fully
diffussion it takes 2 rounds. Doubling it we would have 4 rounds. In
case of differential cryptanalisys attack best probability of first
rounds is 2−8 that is because of the L function that difusses the
input, for example when giving her 0000-000X differential the
differential output would be 00XX-0X0X. With each round the
probability becomes lower. I took an average of 2−10 for each round
for probability of 2−64 it would take 6.4 rounds, by doubeling it the
total rounds are 12.

1.5 Implementation

#!/usr/bin/env python3

def sigma(word):
 new_word = 0

 new_word |= (word & 0b00010000000000000001000000000000) # 3
 #permutation of the first half of the word
 new_word |= (word & 0x80000000) >> 12 # 0
 new_word |= (word & 0x40000000) >> 8 # 1
 new_word |= (word & 0x20000000) >> 11 # 2
 new_word |= (word & 0x08000000) >> 10 # 4
 new_word |= (word & 0x04000000) >> 6 # 5
 new_word |= (word & 0x02000000) >> 9 # 6
 new_word |= (word & 0x01000000) >> 1 # 7
 new_word |= (word & 0x00800000) >> 2 # 8
 new_word |= (word & 0x00400000) << 2 # 9
 new_word |= (word & 0x00200000) << 9 # A
 new_word |= (word & 0x00100000) << 6 # B
 new_word |= (word & 0x00080000) << 12 # C
 new_word |= (word & 0x00040000) << 11 # D
 new_word |= (word & 0x00020000) << 10 # E
 new_word |= (word & 0x00010000) << 9 # F

 #permutation of the second half of the word
 new_word |= (word & 0x00008000) >> 12 # 0
 new_word |= (word & 0x00004000) >> 8 # 1
 new_word |= (word & 0x00002000) >> 11 # 2
 new_word |= (word & 0x00000800) >> 10 # 4
 new_word |= (word & 0x00000400) >> 6 # 5

 new_word |= (word & 0x00000200) >> 9 # 6
 new_word |= (word & 0x00000100) >> 1 # 7
 new_word |= (word & 0x00000080) >> 2 # 8
 new_word |= (word & 0x00000040) << 2 # 9
 new_word |= (word & 0x00000020) << 9 # A
 new_word |= (word & 0x00000010) << 6 # B
 new_word |= (word & 0x00000008) << 12 # C
 new_word |= (word & 0x00000004) << 11 # D
 new_word |= (word & 0x00000002) << 10 # E
 new_word |= (word & 0x00000001) << 9 # F

 return new_word

def rotate_left(word, n, word_size=32):
 mask = 2**word_size - 1

 return ((word << n) & mask) | ((word >> (word_size - n) & mask))

def L(word):
 return (rotate_left(word, 8) ^ rotate_left(word, 16) ^ rotate_left(word, 20) ^ word)

def apply_sbox(word, nibbles=8):
 word_new = 0
 sbox = (0x1, 0x0, 0x5, 0x3, 0xe, 0x2, 0xf, 0X7, 0xd, 0xa, 0x9, 0xb, 0xc, 0x8, 0x4, 0x6)

 for i in range(nibbles): # 8 nibbles
 nibble = (word >> (i*4)) & 0xF # retrieve the ith nibble
 # insert the permuted nibble in the correct position
 word_new |= sbox[nibble] << i*4
 return word_new

def F(word):
 word = apply_sbox(word)
 word = L(word)
 return sigma(word)

def round_function(left, right, key):
 return ((F(left) ^ right ^ key), left)

def compute_roundkeys(key, rounds):
 key_parts = []
 for i in range(2): # compute first two roundkeys each one 32 bits
 key_parts.append(sigma((key & 0xFFFFFFFF)) ^ 0x7)
 key >>= 32

 key_parts.reverse()

 for i in range(2, rounds): # compute the rest of the roundkeys
 rk = key_parts[0]
 for j in range(1, i): # xor with all the previous round keys
 rk = rk ^ key_parts[j]
 rk = sigma(rk) ^ 0x7
 key_parts.append(rk)

 return key_parts

def encrypt(word, key, rounds = 12):
 left = (word >> 32) & 0xFFFFFFFF
 right = word & 0xFFFFFFFF

 round_keys = compute_roundkeys(key, rounds)

 for i in range(rounds):
 left, right = round_function(left, right, round_keys[i])

 return (left << 32) | right

def decrypt(word, key, rounds = 12):
 left = word & 0xFFFFFFFF
 right = (word >> 32) & 0xFFFFFFFF

 round_keys = compute_roundkeys(key, rounds)
 round_keys.reverse()

 for i in range(rounds):
 left, right = round_function(left, right, round_keys[i])

 return (right << 32) | left

if __name__ == "__main__":
 import sys
 import random

 word = 0x9D56F59C6E35487F
 key = 0x25A8B5EE0241D63E
 cipher = encrypt(word, key, rounds = 12)

 print("%016X %016X"%(word, cipher))

