Specification of CHOCOLATE
April 11, 2019

1 Cipher

The block cipher CHOCOLATE has a 64-bit blocksize and a 64 bit key. CHOCOLATE
is a 12 rounds cipher based on a feistel network with 4-bit sboxes and a bit
permutation as the linear layer, and also a function based on rotation and XOR a
see Figure 1.1 for a visual representation.

1.1 Round function

Given a word x = I|r where [consists of the 32 most significant bits and r consists
of the 32 least significant bits. We divide to [= 1|}, (each 16 bits). We define
two functions:

Fi(x) =0(S(x)), F(x) = (x << 3)®(x < 8)D(x « 14)
And we can define the round function F as follows:

F(1,0 = ((Fa(liow®Fy Gap))| s (L) eareak|z)

Where S°is the parallel application of the 4-bit sbox S to the state and o is a bit
permutation.

see Figure 1.1 for a visual representation.

The sbox S is defined as follows (taken from block cipher PRESENT):
$=(C5,6,B,9,0,A,D,3,0,F,8,4,7,1,2)

and the bit permutation o is defined as follows (taken from TC05):

[.

1.2 Key schedule

Given master key K = ki|ko the round key kiis defined as follows:

1.3 Testvectors

kiv1=ki @ o(ki-1) P 0x3

plaintext ciphertext key

0000000000000000 | 75ede5d924e500el | 0000000000000000
0123456789abcdef | 01a2dd0a93069e20 | 0123456789abcdef
ababababcdcdcdced dd163fce7667a031 | 0123012301230123

Fz%

Figure 1: Round function of CHOCOLATE

? T\Fz(llow®F1(lup))|F1 (lup) =

1.4 Reference Implementation

def apply sbox(word, nibbles

o o

sbox t oble
word_new 0
sbox = (0xC, 5, 6, OxB, 9, 0, OxA, OxD, 3, OxE, OxF, 8, 4, 7, 1, 2)
for i in range (nibbles): # 16 nikt s

nibble = (word >> (i * 4))

inser

d n

pe 1
word_new |= sbox[nibble] << i * 4

return word_new

def sigma (word) :

o

o

two most si nt bi

twt i n
(word & 0b1100000000001100) >> 1

now m

new_word |= (word & 0x2000) >> 6 t 2
new_word |= (word & 0x1000) >> 8
new_word |= (word & 0x0C00) >> 5
new_word |= (word & 0x0200) << 6
new_word |= (word & 0x0100) << 4
new_word |= (word & 0x00CO) << 3

new _word |= (word & 0x0020) >> 2
new_word |= (word & 0x0010) >> 4
new_word |= (word & 0x0002) << 10

new _word |= (word & 0x0001) << 8

return new_word

def F1l (word):
return siqma(apply_sbox(wordH

def rotate left (word, n, word size=16):
mask = 2**word_size - 1
return ((word << n) & mask

((word >> (word size - n) & mask)

def F2 (word):
return rotate left(word, 3, 16) ” rotate left(word, 8, 16) "~ rotate left(word, 14, 16)

def F(word) :
upper = (word >> 16) & OxFFFF
upper = F1 (upper
lower = word & OxFFFF
lower = F2(lower”upper
return (lower << 16) | upper

def round function(left, right, key):
return ((F(left) " right * key), left)

def compute_roundkeys (key, rounds):
key parts = []
key parts.append(key & OxFFFFFFFF)
key >>= 32
key parts.append(key & OxFFFFFFFF)

for i in range (2, rounds):
rk = key parts[i - 1]
key_parts.append (rk

sigma (key_parts[i - 2]) ~ 0x3

return key parts

def encrypt (word, key, rounds=12):
left = (word >> 32) & OxFFFFFFFF
right = word & OxXFFFFFFFF
round_keys = compute_roundkeys (key, rounds

for i in range (rounds) :
left, right = round function(left, right, round keys[i]

return (left << 32) | right
def decrypt (word, key, rounds=12):
left = word & OxFFFFFFFF

right = (word >> 32) & OxFFFFFFFF

round_keys = compute_roundkeys (key, rounds
round_keys.reverse ()

for i in range (rounds) :
left, right = round function(left, right, round keys[i]

return (right << 32) | left

