
1

Specification of CHOCOLATE

April 11, 2019

1 Cipher

The block cipher CHOCOLATE has a 64-bit blocksize and a 64 bit key. CHOCOLATE

is a 12 rounds cipher based on a feistel network with 4-bit sboxes and a bit

permutation as the linear layer, and also a function based on rotation and XOR a

see Figure 1.1 for a visual representation.

1.1 Round function

Given a word x = l|r where l consists of the 32 most significant bits and r consists

of the 32 least significant bits. We divide to 𝑙 = 𝑙𝑢𝑝|𝑙𝑙𝑜𝑤 (each 16 bits). We define

two functions:

𝐹1(𝑥) = 𝜎(𝑆(𝑥)), 𝐹2(𝑥) = (𝑥 ⋘ 3)⨁(𝑥 ⋘ 8)⨁(𝑥 ⋘ 14)

And we can define the round function F as follows:

𝐹(𝑙, 𝑟, 𝑘) = ((𝐹2(𝑙𝑙𝑜𝑤⨁𝐹1(𝑙𝑢𝑝))|𝐹1(𝑙𝑢𝑝)) ⨁𝑟⨁𝑘|𝑙)

Where S0 is the parallel application of the 4-bit sbox S to the state and σ is a bit

permutation.

see Figure 1.1 for a visual representation.

The sbox S is defined as follows (taken from block cipher PRESENT):

S = (C, 5, 6, B, 9, 0, A, D, 3, 0, F, 8, 4, 7, 1, 2)

and the bit permutation σ is defined as follows (taken from TC05):

2

1.2 Key schedule

Given master key K = k1|k0 the round key ki is defined as follows:

ki+1 = ki ⊕ σ(ki−1) ⊕ 0x3

1.3 Test vectors

plaintext ciphertext key

0000000000000000 75ede5d924e500e1 0000000000000000

0123456789abcdef 01a2dd0a93069e20 0123456789abcdef

ababababcdcdcdcd dd163fce7667a031 0123012301230123

Figure 1: Round function of CHOCOLATE

S
S

S
S

σ

𝐹2

𝑙 𝑟

𝑟𝑘
⨁

𝑙𝑢𝑝

𝑙𝑙𝑜𝑤

𝐹2(𝑙𝑙𝑜𝑤⨁𝐹1(𝑙𝑢𝑝))|𝐹1(𝑙𝑢𝑝)

⨁

3

1.4 Reference Implementation

#!/usr/bin/env python3

def apply_sbox(word, nibbles=4):

 """ apply the sbox to every nibble """

 word_new = 0

 sbox = (0xC, 5, 6, 0xB, 9, 0, 0xA, 0xD, 3, 0xE, 0xF, 8, 4, 7, 1, 2)

 for i in range(nibbles): # 16 nibbles

 nibble = (word >> (i * 4)) & 0xF # retrieve the ith nibble

 # insert the permuted nibble in the correct position

 word_new |= sbox[nibble] << i * 4

 return word_new

def sigma(word):

 """

 Implementing the sigma permutation on the 8 bit word.

 """

 new_word = 0

 # first move the two most significant bits of nibble 0 and 3

 new_word |= (word & 0b1100000000001100) >> 1 # 0, 1, C, D

 # now move the rest of the bits

 new_word |= (word & 0x2000) >> 6 # 2

 new_word |= (word & 0x1000) >> 8 # 3

 new_word |= (word & 0x0C00) >> 5 # 4, 5

 new_word |= (word & 0x0200) << 6 # 6

 new_word |= (word & 0x0100) << 4 # 7

 new_word |= (word & 0x00C0) << 3 # 8, 9

 new_word |= (word & 0x0020) >> 2 # A

 new_word |= (word & 0x0010) >> 4 # B

 new_word |= (word & 0x0002) << 10 # E

 new_word |= (word & 0x0001) << 8 # F

 return new_word

def F1(word):

 return sigma(apply_sbox(word))

def rotate_left(word, n, word_size=16):

 mask = 2**word_size - 1

 return ((word << n) & mask) | ((word >> (word_size - n) & mask))

def F2(word):

 return rotate_left(word, 3, 16) ^ rotate_left(word, 8, 16) ^ rotate_left(word, 14, 16)

def F(word):

 upper = (word >> 16) & 0xFFFF

 upper = F1(upper)

 lower = word & 0xFFFF

 lower = F2(lower^upper)

 return (lower << 16) | upper

def round_function(left, right, key):

 return ((F(left) ^ right ^ key), left)

def compute_roundkeys(key, rounds):

 key_parts = []

 key_parts.append(key & 0xFFFFFFFF)

 key >>= 32

 key_parts.append(key & 0xFFFFFFFF)

 for i in range(2, rounds):

 rk = key_parts[i - 1] ^ sigma(key_parts[i - 2]) ^ 0x3

 key_parts.append(rk)

 return key_parts

4

def encrypt(word, key, rounds=12):

 left = (word >> 32) & 0xFFFFFFFF

 right = word & 0xFFFFFFFF

 round_keys = compute_roundkeys(key, rounds)

 for i in range(rounds):

 left, right = round_function(left, right, round_keys[i])

 return (left << 32) | right

def decrypt(word, key, rounds=12):

 left = word & 0xFFFFFFFF

 right = (word >> 32) & 0xFFFFFFFF

 round_keys = compute_roundkeys(key, rounds)

 round_keys.reverse()

 for i in range(rounds):

 left, right = round_function(left, right, round_keys[i])

 return (right << 32) | left

