
Specification of SINGE

Yonatan Sigal

May 2019

1 Cipher

The cipher takes a 64-bit key and 64-bit words and computes the ciphertext in
16 rounds. The words are divided into 16 4-bit nibbles, called the state of the
cipher.

1.1 Round function

The round function of SINGE is similar to the round function of AES. As in
AES it consists of a sequential application of 4 layers. Add Roundkey (AR),
Sub Cells (SC), Shift Rows (SR) and Mix Columns (MC). Note that my SR
layer is round dependent

1.1.1 Add Roundkey

In the Add Roundkey layer we XOR the key state with the cipher state.

1.1.2 Sub Cells

In the Sub Cells (SC) layer we apply following substitution box (taken from [1])
(sbox) from to every nibble of the iternal state.

S = [E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7]

1.1.3 Shift Rows

In the shift rows layer (SR) we rotate the nibbles in the rows depending on the
round. we shift the rows by 0, 1, 2 and 3 to the left, and every round we start
with another row i.e. on the first round we perform a regular SR, then on the
next round start with the 4th row (starting one row upper on each round), and
so on. note this illustration where i is the round index and <<< is nibble-wise
rotate left

row0 <<< i (mod 4)
row1 <<< 1 + i (mod 4)
row2 <<< 2 + i (mod 4)
row3 <<< 3 + i (mod 4)

1

1.1.4 Mix Columns

In the Mix Columns (MC) layer we mix the nibbles in every column according
to a matrix. The matrix is given by:

1 0 1 0
0 1 1 0
1 0 1 1
0 1 0 1

We multiply each column with the matrix.

1.2 Key Schedule

Given a master key K = k0, the keystate for the i-th round is given by applying
the following recurrence relationship:

ki = SR((ki−1

⊕
0x00000000FFFFFFFF) <<< 16)

where SR is the regular Shift Rows, not the round dependent

2 Test Vectors

Using k = 0x0123456789ABCDEF as the key, here are some test examples:

Plaintext Ciphertext
0x0000000000000000 0xB2AD8767AA0F1DDB

0xDEADBEEFBE57F00D 0x2507E9B425E90F9F
0xDEADBEEFBAADF00D 0xAAB0D2B332DF456F

0x01236989EF16597A 0x34A27566CE6CB740
0xAFDCD7290FAF64BA 0x4716AEF7024E87B8
0xFBF074C91C4AD5EF 0xADD4BFC0033D4F7E

3 Design Rationale

I tried to create an AES like cipher, but wanted to be a little bit creative,
especially with the SR function and Key Scheduling. I used TC0X Ciphers we
broke as the shell to my cipher, but with tweaks and changes that (I think)
made it stronger.

4 Python Reference Code

most of the code is reusing [2] reference code, with of course the changes needed
for my own cipher

2

def get rows(word):
row 0 = (word >> 48) & 0xFFFF

row 1 = (word >> 32) & 0xFFFF

row 2 = (word >> 16) & 0xFFFF

row 3 = (word >> 0) & 0xFFFF

return row 0 , row 1 , row 2 , row 3

def rotate left(word, n, word size=64):
mask = 2 ∗∗ word size − 1
return ((word << n) & mask) | ((word >> (word size − n) & mask))

def rotate right(word, n, word size=64):
mask = 2 ∗∗ word size − 1
return ((word >> n) & mask) | ((word << (word size − n) & mask))

def next keystate(keystate):
return shift rows(rotate left(keystate ^ 0x00000000FFFFFFFF , 16, 64))

def add roundkey(word, keystate):
return word ^ keystate

def apply sbox(word, sbox):
””” apply the sbox to every nibble ”””
word new = 0

for i in range(16): # 16 nibb les
nibble = (word >> (i ∗ 4)) & 0xF # retrieve the i th nibble
insert the permuted nibble in the correct position
word new |= sbox[nibble] << i ∗ 4

return word new

def shift rows(word, i = 0):
row 0 , row 1 , row 2 , row 3 = get rows(word)

apply the shiftrows transformation
row 0 = rotate left(row 0 , (0 + 4∗i) % 16, 16)
row 1 = rotate left(row 1 , (4 + 4∗i) % 16, 16)
row 2 = rotate left(row 2 , (8 + 4∗i) % 16, 16)
row 3 = rotate left(row 3 , (12 + 4∗i) % 16, 16)

3

reconstruct the word
new word = row 0 << 48 # a |= b <==> a = a | b
new word |= row 1 << 32

new word |= row 2 << 16

new word |= row 3 << 0

return new word

def mix columns(word):
row 0 , row 1 , row 2 , row 3 = get rows(word) # sp l i t up the word into rows
Apply the mix culomns transformation and reconstruct the word
new word = (row 0 ^ row 2) << 48

new word |= (row 1 ^ row 2) << 32

new word |= (row 0 ^ row 2 ^ row 3) << 16

new word |= (row 1 ^ row 3) << 0

return new word

def round function(word, keystate , round):
sbox = [0xE, 0x4, 0xD, 0x1, 0x2, 0xF, 0xB, 0x8,

0x3, 0xA, 0x6, 0xC, 0x5, 0x9, 0x0, 0x7] # sbox taken from cited ar t i c l e

word = add roundkey(word, keystate)

word = apply sbox(word, sbox)

word = shift rows(word, round)
word = mix columns(word)

return word

def encrypt(word, key, rounds):
keystate = key

for i in range(rounds):
apply the roundfunction to word
word = round function(word, keystate , i)

go to the next key state
keystate = next keystate(keystate)

return word

4

References

[1] Sankhanil Dey and Ghosh Ranjan. 4, 8, 32, 64 bit substitution box gener-
ation using irreducible or reducible polynomials over galois field gf(pq) for
smart applications. Arxiv, page 5.

[2] Eran Lambooi. Tc0x cipher series. https://cryptanex.hideinplainsight.io,
2018.

LATEX

5

