Brute forcing TCO1

November 21, 2018

As a first exercise we focus on brute forcing a Toy Cipher !, which we will
name TCO1. It is on purpose a very weak, but very easy to implement Toy
Cipher. To get you started a Python implementation is given. My advice is to
rewrite it in a language with less overhead (such as C, C++, Go, etc.).

1 Cipher

The cipher takes a 64-bit key and 64-bit words and computes the ciphertext in
20 rounds. The words are divided into 16 4-bit nibbles. We index s.t. the 0-th
bit is the LSB and the 0-th nibble is bit 0 to bit 3.

1.1 Round function

The round function consists of a substitution and a permutation layer. The
permutation layer consists of 16 parallel applications of a 4-bit s-box given by:

S=[24561AF3BEO0798CD]

The diffusion layer operates on the full word and is defined by the following
function:
Lz)=(rx15)d(r<x32)dx

This leads to the following round function (where k; is the i-th round key):

F(z,ki) = L(S(z @ k;))

1By using the term Toy Cipher I hope that no one comes up with the great idea to use
this in any form, maybe I should use a very restricitive license to be able to enforce this.

ko k1

l

P — @ - Sbox

Figure 1: TCO1

% <« 15 F ® — ... [18 times] ...

|

— P —

Sbox

%<<<15FEB—>C

1.2 Key schedule
Given a master key K, the key for the i-th round is given by:

L(k;—1) ® 0x3 ifi>0

k; = .
K ifi=0

1.3 Reference Implementation

#!/usr/bin/env python3

def rotate_left(word, n, word_size=64):
mask = 2*%*xword_size - 1
return ((word << n) & mask) | ((word >> (word_size - n) & mask))

def L(word):
return (rotate_left(word, 15) ~ rotate_left(word, 32) ~ word)

def apply_sbox(word, sbox):
apply the sbox to every nibble

word_new = O

for i in range(16): # 16 nibbles
nibble = (word >> (i*4)) & OxF # retrieve the ith nibble
insert the permuted nibble in the correct position
word_new |= sbox[nibble] << ix*4

return word_new

def round_function(word, key):
we first define the S-box, now sbox[0] = 2, sbox[1] = 4, etc.
sbox = [0x2, Ox4, 0x5, 0x6, Oxl1, OxA, OxF, 0x3,
0xB, OxE, 0x0, 0x7, 0x9, 0x8, 0xC, 0xD]

xor the key into the state

word “= key

apply the sbox to every nibble of the word

word = apply_sbox(word, sbox)

apply the linear layer to the state

word = L(word)

return the new word and the key for the next round
return word, L(key) 0x3

def encrypt(word, key, rounds=20):
Apply the round function <rounds> times
for r in range(rounds):
word, key = round_function(word, key)

return word

