
Brute forcing TC01

November 21, 2018

As a first exercise we focus on brute forcing a Toy Cipher 1, which we will
name TC01. It is on purpose a very weak, but very easy to implement Toy

Cipher. To get you started a Python implementation is given. My advice is to
rewrite it in a language with less overhead (such as C, C++, Go, etc.).

1 Cipher

The cipher takes a 64-bit key and 64-bit words and computes the ciphertext in
20 rounds. The words are divided into 16 4-bit nibbles. We index s.t. the 0-th
bit is the LSB and the 0-th nibble is bit 0 to bit 3.

1.1 Round function

The round function consists of a substitution and a permutation layer. The
permutation layer consists of 16 parallel applications of a 4-bit s-box given by:

S = [2 4 5 6 1 A F 3 B E 0 7 9 8 C D]

The diffusion layer operates on the full word and is defined by the following
function:

L(x) = (x ≪ 15) ⊕ (x ≪ 32) ⊕ x

This leads to the following round function (where ki is the i-th round key):

F (x, ki) = L(S(x⊕ ki))

1By using the term Toy Cipher I hope that no one comes up with the great idea to use
this in any form, maybe I should use a very restricitive license to be able to enforce this.

P ⊕

k0

... [18 times] ... CSbox ≪ 15

≪ 32

⊕ Sbox⊕

k1

≪ 15

≪ 32

⊕

Figure 1: TC01

1



1.2 Key schedule

Given a master key K, the key for the i-th round is given by:

ki =

{
L(ki−1) ⊕ 0x3 if i > 0

K if i = 0

1.3 Reference Implementation

#!/usr/bin/env python3

def rotate_left(word , n, word_size =64):

mask = 2** word_size - 1

return ((word << n) & mask) | ((word >> (word_size - n) & mask))

def L(word):

return (rotate_left(word , 15) ^ rotate_left(word , 32) ^ word)

def apply_sbox(word , sbox):

# apply the sbox to every nibble

word_new = 0

for i in range (16): # 16 nibbles

nibble = (word >> (i*4)) & 0xF # retrieve the ith nibble

# insert the permuted nibble in the correct position

word_new |= sbox[nibble] << i*4

return word_new

def round_function(word , key):

# we first define the S-box , now sbox [0] = 2, sbox [1] = 4, etc.

sbox = [0x2, 0x4, 0x5, 0x6, 0x1, 0xA, 0xF, 0x3,

0xB , 0xE , 0x0 , 0x7 , 0x9 , 0x8 , 0xC , 0xD]

# xor the key into the state

word ^= key

# apply the sbox to every nibble of the word

word = apply_sbox(word , sbox)

# apply the linear layer to the state

word = L(word)

# return the new word and the key for the next round

return word , L(key )^0x3

def encrypt(word , key , rounds =20):

# Apply the round function <rounds > times

for r in range(rounds ):

word , key = round_function(word , key)

return word

2


